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Overview

Agenda:
@ Ridge regression.

@ Lasso regression.

Readings:
@ ISLR Chapter 6, sections 6.1 and 6.2

ML in Economics | Cappello | Fall 2024 Module 4: Feature Selection in Linear Models 2/18



|
Shrinkage Methods

@ The subset selection methods fit a linear model that contains only a subset of the predictors. This is
equivalent to setting the coefficients on excluded predictors to zero prior to running the estimation
algorithm.
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Shrinkage Methods

@ The subset selection methods fit a linear model that contains only a subset of the predictors. This is
equivalent to setting the coefficients on excluded predictors to zero prior to running the estimation
algorithm.

@ As an alternative, one can fit a model containing all p predictors using a technique that regularizes
the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero as part
of the estimation algorithm.

@ It may not be immediately obvious why such a constraint should improve the fit or if the algorithm
will work in the first place, but it turns out that shrinking the coefficient estimates can significantly
reduce their variance at a cost of a minor increase in bias.
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Shrinkage Methods

@ The subset selection methods fit a linear model that contains only a subset of the predictors. This is
equivalent to setting the coefficients on excluded predictors to zero prior to running the estimation
algorithm.

@ As an alternative, one can fit a model containing all p predictors using a technique that regularizes
the coefficient estimates, or equivalently, that shrinks the coefficient estimates towards zero as part
of the estimation algorithm.

@ It may not be immediately obvious why such a constraint should improve the fit or if the algorithm
will work in the first place, but it turns out that shrinking the coefficient estimates can significantly
reduce their variance at a cost of a minor increase in bias.

@ Two most common shrinkage/regularization methods are ridge regression and lasso regression.

ML in Economics | Cappello | Fall 2024 Module 4: Feature Selection in Linear Models 3/18



|
Ridge Regression

@ Standard least squares regression fits the model by picking values of 5y, 01, ..., 8, that minimize

2

n P
RSS:Z ,Vi—ﬂO_ZBinj
i=1 =1
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|
Ridge Regression

@ Standard least squares regression fits the model by picking values of 5y, 01, ..., 8, that minimize

2

n P
RSS:Z ,Vi—ﬂo—Zﬁinj
i=1 =1

o Ridge regression instead picks coefficient values ER that minimize
n P
Slyi—Bo—_ Bixy +>\252 RSS+>\ZB2

i=1 j=1 j=1

@ Parameter X is the tuning parameter, to be determined separately.
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Ridge Regression

@ The nature of ridge regression is similar to that of OLS: seek coefficient values that make the model
fit the data well (by making RSS small).

@ However, now we can no longer set values of coefficients to just significantly decrease RSS. This
is because the second term /\Zle J?, called a shrinkage penalty, will increase our loss function if

values of (o, 81, ..., Bp are far away from zero.
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Ridge Regression

@ The nature of ridge regression is similar to that of OLS: seek coefficient values that make the model
fit the data well (by making RSS small).

@ However, now we can no longer set values of coefficients to just significantly decrease RSS. This
is because the second term /\Zle J?, called a shrinkage penalty, will increase our loss function if
values of (o, 81, ..., Bp are far away from zero.

@ Because loss function now has two terms to balance out, the extra second term has the effect of
shrinking the estimates of (3; towards zero.
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Ridge Regression

@ The nature of ridge regression is similar to that of OLS: seek coefficient values that make the model
fit the data well (by making RSS small).

@ However, now we can no longer set values of coefficients to just significantly decrease RSS. This
is because the second term /\Zle J-Z, called a shrinkage penalty, will increase our loss function if
values of (o, 81, ..., Bp are far away from zero.

@ Because loss function now has two terms to balance out, the extra second term has the effect of
shrinking the estimates of (3; towards zero.

@ The tuning parameter \ serves to control the relative impact of these two terms on the regression
coefficient estimates. Selecting a good value for A is critical, and is done via cross-validation.
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Credit Card Data Example
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@ As can be seen from the picture, it is always
possible to set A to a value that will shrink all
coefficients arbitrary close to zero.

@ As such, we need to perform cross-validation
testing to see which value of A achieves minimal
total value of ridge loss function.

@ The process is usually done via a grid search
algorithm (more on that later)
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Feature Scaling and Standardization

o Standard least squares coefficient estimates are scale equivariant: multiplying X; by a constant ¢
simply leads to a scaling of the least squares coefficient estimate j3; by a factor of 1/c. In other
words, regardless of how the j-th predictor is scaled, 5;X; will always remain the same.
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o Standard least squares coefficient estimates are scale equivariant: multiplying X; by a constant ¢
simply leads to a scaling of the least squares coefficient estimate B\J by a factor of 1/c. In other
words, regardless of how the j-th predictor is scaled, BJXJ will always remain the same.

@ In contrast, the ridge regression coefficient estimates can change substantially when multiplying a

given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the
ridge regression loss function.

@ Unlike the first term, which contains B\JXJ parts, the shrinkage penalty contains values of only 32,
thus making is scale-dependent.
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Feature Scaling and Standardization

o Standard least squares coefficient estimates are scale equivariant: multiplying X; by a constant ¢
simply leads to a scaling of the least squares coefficient estimate j3; by a factor of 1/c. In other
words, regardless of how the j-th predictor is scaled, 5;X; will always remain the same.

@ In contrast, the ridge regression coefficient estimates can change substantially when multiplying a
given predictor by a constant, due to the sum of squared coefficients term in the penalty part of the
ridge regression loss function.

@ Unlike the first term, which contains B\JXJ parts, the shrinkage penalty contains values of only 32,
thus making is scale-dependent.

@ Therefore, it is best to apply ridge regression after standardizing the predictors:

Xjj

Xij = -
\/ Z: 1 (G —X;)
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|
Why Does Ridge Regression Improve Over LS: Bias-variance trade-off

@ Suppose our test data Te consists of a single data point (xg, o). Then
” 2 N 2
MSE =E Kyo - f(xo)) ] —E [(f(xo) - f(xo)) ] + Var(eo)
=5 | (o) ~ £ [f0)]) | + 2 | (10) ~ &[] )| + varten)

Var(f(Xg)) ]E[Biasz(f(xo))]

o Variance refers to the amount by which  would change if we estimated it using a different training
data set

@ Bias refers to the error that is introduced by approximating a real-life problem by a much simpler
model
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Why Does Ridge Regression Improve Over LS: Bias-variance trade-off

@ Suppose our test data Te consists of a single data point (xg, o). Then
” 2 N 2
MSE =E {(yo - f(xo)) ] —E [(f(xo) - f(xo)) ] + Var(eo)
=5 | (o) ~ £ [f0)]) | + 2 | (10) ~ &[] )| + varten)

Var(f(Xg)) ]E[Biasz(f(xo))]

o Variance refers to the amount by which  would change if we estimated it using a different training
data set

@ Bias refers to the error that is introduced by approximating a real-life problem by a much simpler
model

@ Typically as the flexibility of f increases, its variance increases, and its bias decreases. So choosing
the flexibility based on MSE amounts to a bias-variance trade-off.
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Why Does Ridge Regression Improve Over LS?

8 I @ Squared bias, variance and MSE.
5 84 @ 45 predictors (p), 50 observations (n)
T - @ Because OLS is free to choose any coefficient
g Y values, it tends to pick the ones that provide
& o | best fit, meaning less bias and more variance.
5 ™
3 @ Ridge regression, on the other hand, is penal-
= & ized for choosing coefficients with high second
g ° moments, thus leading to less variance, slightly
T more bias, but lower MSE overall.
o
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Lasso regression

@ Unlike subset selection, which generally selects models that involve just a subset of all variables, ridge
regression will include all p predictors in the final model. This makes ridge regression completely
infeasible when p > n, as if often the case, for example, with Internet-related data.
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Lasso regression

@ Unlike subset selection, which generally selects models that involve just a subset of all variables, ridge
regression will include all p predictors in the final model. This makes ridge regression completely
infeasible when p > n, as if often the case, for example, with Internet-related data.

@ The LASSO (Least Absolute Shrinkage and Selection Operator) is an alternative that overcomes this
disadvantage. It achieves that by using a different type of shrinkage penalty:

2
n

P P P
Slyi=Bo=D Bixi | +AD_ 1B =RSS+ 1> |8

i=1 j=1 j=1 j=1

@ In statistical lingo, this type of penalty is known as /1-penalty, because it uses £; norm of coefficient
vector [ given by ||3||1 = Y_ |5;j|. Ridge regression, on the other hand, uses ¢, norm as a penalty,

given by [|8]l2 = 32 57
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Lasso Variable Selection

o As with ridge regression, lasso shrinks all coefficient estimates towards zero.

@ However, unlike /> penalty in ridge regression, lasso penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when the tuning parameter X is sufficiently large.
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Lasso Variable Selection

o As with ridge regression, lasso shrinks all coefficient estimates towards zero.

@ However, unlike /> penalty in ridge regression, lasso penalty has the effect of forcing some of the
coefficient estimates to be exactly equal to zero when the tuning parameter X is sufficiently large.

@ Hence, much like best subset selection, lasso performs variable selection, starting with the full set of

p variables. We say that lasso yields sparse models — that is, models that involve only a subset of
the variables.

@ As in ridge regression, selecting a good value of \ for lasso is critical; cross-validation is again the
method of choice.
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Credit Card Data Example
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RIDGE vs LASSO
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|
RIDGE vs LASSO

@ Why is it that in lasso regression we get some of the coefficients shrunk exactly to zero, but not in
ridge regression?
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RIDGE vs LASSO

@ Why is it that in lasso regression we get some of the coefficients shrunk exactly to zero, but not in
ridge regression?

@ One can show that lasso and ridge regression coefficient estimates solve the following problems:

2
n p p
mgn Z Yi — Bo — Zﬂjx,-j subject to Z 1Bi] <s
i=1 j=1 =
and
2
n p o
mﬂin Z i = Bo— Zﬁjxij subject to Zﬁj? <s
i=1 j=1 =

@ These two problems have a useful geometric representation that shows exactly why lasso induces
sparsity among coefficients.
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RIDGE vs LASSO
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|
Selecting the Tuning Parameter A

@ Both with ridge and with lasso we need to select the value for the tuning parameter A or equivalently,
the value of the constraint s in a way that will not lead to overfitting or other mistakes. Cross-
validation provides a simple way to tackle this problem.
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@ Both with ridge and with lasso we need to select the value for the tuning parameter A or equivalently,
the value of the constraint s in a way that will not lead to overfitting or other mistakes. Cross-
validation provides a simple way to tackle this problem.

@ We choose a grid of A values and fit a separate model for every value from that grid using K-fold
cross-validation.

@ We then compute the cross-validation error for each value of A\ and select the one for which that
error is smallest.

ML in Economics | Cappello | Fall 2024 Module 4: Feature Selection in Linear Models 16 /18



|
Selecting the Tuning Parameter A

@ Both with ridge and with lasso we need to select the value for the tuning parameter A or equivalently,
the value of the constraint s in a way that will not lead to overfitting or other mistakes. Cross-
validation provides a simple way to tackle this problem.

@ We choose a grid of A values and fit a separate model for every value from that grid using K-fold
cross-validation.

@ We then compute the cross-validation error for each value of A\ and select the one for which that
error is smallest.

o Finally, the model is re-fit using all of the available observations and the selected value of the tuning
parameter.

ML in Economics | Cappello | Fall 2024 Module 4: Feature Selection in Linear Models 16 /18



Pros and Cons of Lasso

@ In terms of overall fit neither ridge regression nor lasso will universally dominate the other.
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@ In general, one might expect lasso to perform better when the response is a function of only a
relatively small number of predictors. However, that is never known a priori with real-life data.
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@ In general, one might expect lasso to perform better when the response is a function of only a
relatively small number of predictors. However, that is never known a priori with real-life data.

o Ridge regression can perform better if p < n and there is no a priori reason for some of the variables
to not be included in the model.
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Pros and Cons of Lasso

@ In terms of overall fit neither ridge regression nor lasso will universally dominate the other.

@ In general, one might expect lasso to perform better when the response is a function of only a
relatively small number of predictors. However, that is never known a priori with real-life data.

o Ridge regression can perform better if p < n and there is no a priori reason for some of the variables
to not be included in the model.

o Lasso can perform variable selection and model estimation with p > n, but has a known issue
of ignoring groups of correlated variables (e.g. performance metrics of NBA players) and almost
randomly selecting only one variable out of the group.
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Lasso and Economics

@ Despite its know flaws, over the past decade lasso has become very popular with both academic
researchers and applied economists.

@ From the theoretical perspective, multiple extensions and variations of lasso has been suggested, and
today advanced versions of it can deal both with correlated regressors (group lasso, elastic net) and
biased estimates (adaptive lasso, post-lasso).

@ The main driving force behind is the ability to tackle datasets that previously were completely
unusable due to number of variables p being close or even larger than sample size n.

o Additionally, lasso allows economists to utilize sparse structural models, e.g. consumer preferences
across hundreds of product attributes with most of them having zero importance.
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